Chemistry Letters 1996 1025

Useful Synthesis of 2,3,6-Polythiazolesubstituted Pyridine Skeleton [Fragment A-C] of Peptide Antibiotic, Micrococcin P

Kazuo Okumura, Masashi Shigekuni, Yutaka Nakamura, and Chung-gi Shin* Laboratory of Organic Chemistry, Faculty of Technology, Kanagawa University, Kanagawa-ku. Yokohama 221

(Received August 13, 1996)

Practical synthesis of 2,3,6-trithiazolesubstituted pyridine skeleton [Fragment A-C] of peptide antibiotic micrococcin P was achieved from 3-cyano-6-dimethoxymethyl-2-pyridone in twelve steps.

A thiostrepton-type antibiotic, micrococcin P (1), ¹ isolated from the culture of *Bacillus pumilus*, is a unique macrocyclic peptide, as shown in Figure 1. The peptide (1) includes a characteristic main structure, 2,3,6-polythiazolesubstituted pyridine skeleton [Fragment A-C: 2] composed of polythiazole and dehydropeptide moieties. The interesting structure and bioactivity of 1 attracted us to investigate its total synthesis. The thiazole-dehydrotripeptide substructure called Fragment B-C was previously synthesized by us. ² The synthesis of micrococcinic acid [2,3,6-(trithiazole)pyridine derivative] partially hydrolyzed Fragment A was already reported by Kelly et al. ³ Here, we have also achieved the efficient synthesis of the protected 2 by the different synthetic method.

At first, for the synthesis of the precursor of thiazole-

Figure 1. Micrococcin P (1).

dehydrodipeptide segment containing Fragment C part, N-benzyloxycarbonyl (Cbz) group of N-Cbz-L-Thr(TBS)-NH₂ (4) (TBS=t-butyldimethylsilyl), derived from N-Cbz-L-Thr-OH via the corresponding amide (3), was deprotected with 10% Pd-C to give H-Thr(TBS)-NH₂ (5). The obtained 5 was coupled with 2-[(S)-1-(Boc)amino-2-methylpropyl]thiazole-4-carboxylic acid (7), derived from the corresponding ester (6) by hydrolysis with 1M LiOH, using diphenylphosphoryl azide (DPPA) as coupling reagent to give the expected dipeptide-NH₂ (8), which was then converted with Lawesson's reagent to the corresponding thioamide (9), sa shown in Scheme 1.

Further extension to Fragment A-C is illustrated in Scheme 2.

To obtain 3-bromoacetyl-2,6-disubstituted pyridine skeleton (17) as the coupling component with 9, 3-cyano-6-dimethoxymethyl-2-pyridone (12), 6 which was derived from 1,1-dimethoxypropanone (10) via an intermediate 11, was thioamidated with H₂S and then thiazolated by the cyclization with BrCH₂COCOOEt by the modified Hantzsch method. Subsequent triflation of the obtained 2-pyridone derivative (14) with

CbzHN OH i) OH OTBS

OH OH OTBS

OH OH OTBS

NH2 ii) NH2

$$68\%$$
 RHN NH2

 68% RHN SH OH

OH OTBS

NH2 iii) OH

OH OTBS

NH2 iii) OH

OH OTBS

NH2 OTBS

OTBS

6: R=Et iv) 7: R=H

8: X=O $\frac{\text{vi}}{83\%}$ 9: X=S

i) a) ClCOOEt, Et₃N, THF, 0 °C, 20 min, b) 28% NH₃, THF, 0 °C, 3 h, ii) TBSCl, imidazole, DMF, 0 °C, 30 min, r.t., 24 h, iii) 10% Pd-C, H₂, EtOH, r.t., 3 h, iv) 1M LiOH, H₂O/dioxane, 0 °C, 30 min, r.t., 4 h, v) DPPA, Et₃N, 5, DMF, 0 °C, 3 h, r.t., overnight, vi) Lawesson's reagent, DME, r.t., 4 h.

Scheme 1.

triflic anhydride (Tf₂O) in the presence of dimethylaminopyridine (DMAP) gave 2-triffoxy derivative (15). Then, substitution of the trifloxy group with ethylvinyl ether⁸ in the presence of Pd(Ac)₂ and 1,3bis(diphenylphosphino)propane (dppp) as catalyst gave 2-(ethoxyvinyl)pyridine (16). Further, conversion of 16 with Nbromosuccinimide (NBS) gave 2-bromoacetyl derivative (17) as an intermediate, which was subjected in situ to the coupling with 9. The thiazolation of 17 with 9 using successive KHCO₂, trifluoroacetic anhydride (TFAA), and 28% NH₂, followed by the deprotection of TBS group of the obtained 2,3-dithiazolated pyridine (18) with tetrabutylfluoroammonium (TBAF) gave the corresponding alcohol (19)¹⁰ containing the Fragment C moiety. After mesylation with methanesulfonyl chloride (MsCl) and subsequent β -elimination with DBU under sonication, the formed dehydropeptide 20 was hydrolyzed with 70% AcOH to give the corresponding 6-formylpyridine derivative (21). Subsequently, according to the Shioiri's method, ¹¹ 21 was bithiazolated with phenacyl (Pac) 2-[(S)-1-amino-2mercaptoethyl]thiazole-4-carboxylate, derived by the consecutive deprotections of Boc and isopropylidene groups of the corresponding thiazole-4-carboxylate (22)¹² with trifluoroacetic acid (TFA), to give the expected 6-bithiazolyl-2,3-dithiazolyl pyridine derivative (23). Finally, the catalytic hydrogenolysis of Pac group of 23 with 10% Pd-C gave 2,3,6-polythiazolesubstituted pyridine derivative 2.

The structures of 23 and 2 were definitely determined by the 1 H NMR spectral data as well as by the satisfactory elemental analysis. All ring protons of the five thiazole moieties of 23 appeared at δ 8.21, 8.30, 8.57, 8.61, and 8.74 as singlets and 3,4-vicinal two protons on the pyridine ring appeared at δ 8.34 and 8.48 as two doublets (*J*=7.9Hz).

This work was supported in part by the Grant-in-Aid for Scientific Research No. 08640698 from the Ministry of Education, Science and Culture, Japan.

i) HCOOEt, NaOEt, THF, 45 °C, 5 h, r.t., overnight, ii) NCCH₂CONH₂, H⁺, H₂O, 60 °C, 16 h, iii) H₂S, DMAP, Et₃N, pyridine, r.t., 48 h, iv) a) BrCH₂COCOOEt, KHCO₃, 0 °C, 30 min, r.t., 24 h, b) TFAA, pyridine, 0 °C, 30 min, r.t., 24 h, v) Tf₂O, DMAP, pyridine, 0 °C, 30 min, r.t., overnight, vi) Ethyl vinylether, Et₃N, Pd(OAc)₂, dppp, toluene, reflux, 4 h, vii) NBS, THF / H₂O, r.t., 5 min, viii) a) 9, KHCO₃, DME, r.t., overnight, b) TFAA, pyridine, 0 °C, 30 min, r.t., 3 h, c) 28% NH₃, ethyl acetate, r.t., 30 min, ix) TBAF, THF, 0 °C, 30 h, x) a) MsCl, Et₃N, DMSO, sonication, r.t., 30 min, b) DBU, DMSO, sonication, r.t., 3 h, xi) 70% AcOH, 45 °C 18 h, xii) a) **22**, TFA, CH₂Cl₂, r.t., 1 h, b) toluene, r.t., 15 min, c) MnO₂, toluene, sonication, 2 h, xiii) 1M LiOH, THF, 0 °C, 2 h.

Scheme 2.

References and Notes

- a) P. Brookes, A. T. Fuller, and J. Walker, J. Chem. Soc., 1957, 689; b) J. Walker, A. Olesker, L. Valente, R. Rabanal, and G. Lukacs, J. Chem. Soc., Chem. Commun., 1977, 706; c) B. W. Bycroft and M. S. Gowland, J. Chem. Soc., Chem. Commun., 1978, 256.
- 2 Y. Nakamura, C. Shin, K. Umemura, and J. Yoshimura, *Chem. Lett.*, **1992**, 1005.
- 3 T. R. Kelly, C. T. Jagoe, and Z. Gu, Tetrahedron Lett., 32, 4263 (1991).
- 4 U. Schmidt, P. Gleich, and H. Griesser, Synthesis, 1986, 992.
- 5 9: Mp 153-154 °C. [cl]²⁴ +59.3° (c 0.90, MeOH). IR (KBr) 3304, 3208, 2962, 2248, 1758, 1668 cm⁻¹. ¹H NMR (DMSO-d_q) δ 0.06 (s, 6H, TBS's CH₃x2), 0.78 (s, 9H, TBS's CH₃x3), 0.84 and 0.87 (each d, 6H, Ip's CH₃, *J*=6.3Hz), 1.08 (d, 3H, CH₃, *J*=6.3Hz), 1.37 (s, 9H, Boc), 2.18-2.25 (m, 1H, Ip's CH), 4.30-4.37 (m, 1H, β-H), 4.52-4.63 (m, 2H, α-H and CHNHBoc), 7.71 (br d, 1H, NH, J=8.3 Hz), 8.01 (br d, 1H, NH, J=9.2 Hz), 8.14 (s, 1H, thiazole ring-H), 9.58 (br s, 1H, NH), 9.76 (br s, 1H, NH). Found: C, 51.66; H, 8.07; N, 10.26%. Calcd for C₃H₂N₂O₅Si: C, 52.04; H, 7.98; N, 10.56%.
- C₂H₂N₄O₃S,Si: C, 52.04; H, 7.98; N, 10.56%.
 J.P. Sanches, T. F. Mich, and G. G. Huang, J. Heterocyclic Chem., 31, 297 (1994).
 a) R. C. Kelly, I. Ebhard, and N. Wicnienski, J. Org. Chem., 51, 4590 (1986).
 b) M. W. Bredenkamp, C. W. Holzapfel, and W. Van Zyl, Synthetic Commun., 20, 2235 (1990).
- 8 I. Pendrak and P. A. Chambers, J. Org. Chem., 60, 3249 (1995).
- 9 T. R. Kelly and F. Lang, *Tetrahedron Lett.*, **36**, 5319 (1995).

- CH(OCH,₃)₂), 7.98 (br d, 1H, NH, J=9.2 Hz), 7.90 , 8.05 and 8.25 (each s, 3H, thiazole ring-H), 7.66 and 8.15 (each d, 2H, pyridine ring- H, J=7.9 Hz). Found: C, 52.40 ; H, 5.83 ; N, 10.66%. Calcd for $C_{33}H_{42}N_6O_8S_3$ 0.5H₂O : C, 52.43 ; H, 5.73 ; N, 11.12%.
- 11 Y. Hamada, M. Shibata, T. Sugiura, S. Kato, and T. Shioiri, J. Org. Chem., 52, 1252 (1987).
- 12 22: Mp 153-154 °C. IR (KBr) 2936, 1698, 1620 cm⁻¹. ¹H NMR (CDCl₃) 8 1.36 (s, 9H, Boc), 1.83 and 1.98 (each s, 6H, CH₃x2), 3.45-3.56 (m, 2H, SCH₂-), 5.61 (s, 2H, OCH₂CO), 5.67-5.75 (m, 1H, -BocNCH-), 7.48-7.99 (m, 5H, Ph), 8.25 (s, 1H, thiazole ring-H). Found: C, 57.03; H, 5.73; N, 5.86%. Calcd for C₂₂H₂₆N₂O₅ S₂: C, 57.12; H, 5.67; N, 6.06%.
- 23: Mp 143-145 °C. [Cl]₀²³+15.8° (c 0.34, CHCl₃). IR (KBr) 3448, 3118, 2974, 1701 cm⁻¹. ¹H NMR (DMSO-d₂) 8 0.88-0.92 (m, 6H, Ip's CH₂), 1.32 (t, 3H, Et's CH₃, J=7.3 Hz), 1.41 (s, 9H, Boc), 1.69 (d, 3H, CH₂CH=, J=7.3 Hz), 2.24-2.31 (m, 1H, Ip's CH), 4.33 (q, 2H, CH₂CH₂, J=7.3 Hz), 4.60-4.75 (m, 1H, CHNH Boc), 5.80 (s, 2H, OCH₂CO), 6.34 (q, 1H, CH₂CH=, J=7.3 Hz), 7.56-8.04 (m, 6H, Ph and NH), 8.21, 8.30, 8.57, 8.61, and 8.74 (each s, 5H, thiazole ring-H), 8.34 and 8.48 (each d, 2H, pyridine ring-H, J=7.9 Hz), 9.79 (br s, 1H, NH). Found: C, 54.68; H, 4.42; N, 11.16%. Calcd for C₄₅H₄₂N₈O₈S₅: C, 54.97; H, 4.31; N, 11.40%.
- 14 2: Mp 198.5-204.5 °C. [cl_p²⁴+24.0° (c 0.30 in MeOH). ¹H HMR (DMSO-d_c) 80.87-0.91 (m, 6H, Ip's CH₂), 1.31 (t, 3H, Et's CH₂, J=7.3 Hz), 1.41 (s, 9H, Boc), 1.68 (d, 3H, CH₂CH=, J=7.3 Hz), 2.45 (m, 1H, Ip's CH), 4.32 (q, 2H, CH₂CH₂, J=6.9 Hz), 4.71 (m, 1H, CH)NHBoc), 6.32 (q, 1H, CH₂CH=, J=6.9 Hz), 7.73 (d, 1H, NH, J=8.3 Hz), 8.13, 8.16, 8.29, 8.56 and 8.67 (each s, 5H, thiazole ring-H), 8.30 and 8.45 (each d, 2H, pyridine ring-H, J=8.3 Hz), 9.80 (br s, 1H, NH), 12.50 (br s, 1H, COOH). Found: C, 48.46; H, 4.12; N, 12.19%. Calcd for C₃H₂₈N₈O,S₅·2.5H₂O: C, 48.83; H, 4.54; N, 12.31%.